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We study the instability of finite-amplitude waves on uniform vortex layers of finite 
thickness bounded by a plane rigid surface. A weakly nonlinear analysis of vorticity 
interface perturbations, and spectral stability calculations using the full equations of 
motion, together show that steady progressive waves are unstable to general 
subharmonic perturbations in the range 0.094 < d / h  < 1.7, where d is the mean layer 
thickness and h is the primary wavelength. The relevance of this instability to 
ultimate interface filamentation is tested by performing several numerical contour- 
dynamical simulations of the nonlinear interface evolution for initial disturbances 
consisting of the finite amplitude wave plus eigenfunctions obtained from the 
spectral calculations. The results indicate that within the band of unstable 
wavelengths, small perturbations to the steady non-uniform flow given by the finite 
amplitude wave motion (vortex equilibrium) are able to grow in magnitude, until at 
a time t,, the wave extremum encounters a hyperbolic critical point of the velocity 
field after which filamentation occurs. Arguments are put forward based on the 
unsteady simulations with the purpose of identifying the preferred frame of reference 
for viewing the kinematical events controlling the filamentation process. An estimate 
for t ,  is then made, and the mechanism of filamentation found is discussed in relation 
to the recently proposed nonlinear-cascade mechanism of Dritschel ( 1 9 8 8 ~ ) .  

1. Introduction 
The numerical technique of contour dynamics (CD) (see Deem & Zabusky 1978a, b ; 

Zabusky, Hughes & Roberts 1979) has proved a powerful tool in the study of vortex 
mechanics for plane incompressible rotational flow of an inviscid fluid. Workers 
utilizing the CD method for the computation of vortex evolution problems have 
however, often encountered the onset of rapid distortions in the vorticity 
discontinuities (contours) with profound effects for both the vortex structure of the 
flow under study and also for the subsequent numerical integrity of the computations. 
These contour distortions have usually been characterized by the convective growth 
of either extrusive or intrusive filaments of fluid with one value of the vorticity into 
a body of fluid with a different numerical vorticity. This behaviour has become 
known as the ‘filamentation ’ phenomenon, and despite recent progress towards its 
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analysis (e.g. Dritschel 1988a), a complete account of the mechanisms controlling 
filament generation has yet to emerge. 

Applying the CD method to the Vlasov equation of plasma dynamics, Berk, 
Neilsen & Roberts (1970) noted the production of ‘spray’ in the numerical simulation 
of the phase-space hole-hole interaction problem (see also Roberts & Christiansen 
1972). Deem & Zabusky (1978a, b)  observed the ejection of extrusive vorticity 
filaments on a very small scale in CD calculations of isolated vortex patch dynamics. 
Pullin (1981) studied the evolution of large finite-amplitude disturbances with 
waveheight 6 and wavelength A ,  to a wall-bounded vortex layer of mean thickness 
d ,  finding intrusive filamentation when 

6 1  
- 2 - [l -exp (-47c dlh)] .  
A 4K 

Filamentation was interpreted as the interaction of an extremum of the displaced 
vorticity discontinuity with the mean flow a t  the level of the (perturbed) critical 
layer. Equation (1.1) specifies an effective minimum amplitude of the disturbance a t  
the onset of filamentation : note that in (1.1) amplitude is non-dimensionalized with 
respect to  wavelength h and not depth d ,  and hence is a measure of wave steepness. 
Results broadly consistent with (1 .1)  were found by Stern (1985) for isolated 
disturbances in an unbounded fluid with both barotropic flow and for flow with 
potential vorticity, and by Stern & Pratt  (1985) in a study of vorticity front 
propagation in the presence of a wall. 

Many of the previously cited papers considered the evolution of either initially 
(very) large disturbances to  otherwise parallel shear flow, or of non-equilibrium 
initial configurations (e.g. Stern & Pratt  1985). The spatial resolution was usually 
low, and where filamentation was encountered, computations extended over only a 
few multiples of the characteristic flow timescale. Dritschel (1988 a )  (hereinafter 
referred to as Dl )  recognized that filamentation may result from the  slow growth of 
disturbances with initially small waveheight to states of uniform vortex equilibria. 
Using a high resolution CD code based on ‘contour surgery’ (Dritschel 1988b), D1 
obtained long timescale calculations of filamentation resulting from the propagation 
of either symmetrical or antisymmetrical isolated disturbances on the boundary of 
a uniform circular vortex. Arguments based on an analysis of the structure of a 
weakly nonlinear approximation to the full evolutionary CD equations were used to 
show that, provided disturbances do indeed grow in steepness, then they will do so at  
a rate proportional to the square of the initial steepness. Since this result holds for 
arbitrarily small initial steepness and since growth was found in each of several 
specific computations of both the weakly nonlinear and the full CD equations, D1 
concluded that filamentation following growth in steepness will occur for almost all 
disturbances to vortex equilibria (of which the circular vortex is a specific example) 
of any steepness whatever. This appears to contradict conclusions drawn by Pullin 
(1981) and by Stern (1985), that  a minimum amplitude is required. 

In the present paper we discuss instability and filamentation of spatially periodic 
waves on vortex layers of finite thickness. We discuss cases for which the wave 
amplitude is either finite or arbitrarily small. Spectral calculations ($5) based on the 
direct computation of stability to generalized subharmonic disturbances and also 
results from the nonlinear Schrodinger equation in the long-wave, small-amplitude 
limit (4 3) reveal instability of the finite-amplitude waves a t  arbitrarily small 
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amplitude and with growth rate proportional to the amplitude squared, over only a 
finite range of d / h .  In $6 we present the results of direct numerical integration of the 
full CD equations which suggest that this instability gives a mechanism for 
filamentation where, following slow growth of the wave amplitude, the disturbance 
extremum approaches a hyperbolic critical point of the velocity field a t  or near the 
critical layer of the primary wave, in a frame of reference defined by the 
perturbation. This appears to be consistent with the results of Pullin (1981) and 
Stern (1985), and we believed initially that our mechanism accounted for the results 
discussed in D l  . However, further examination of evidence given by Dritschel 
(private communication) has shown that this may not be the case and it is now 
apparent that filamentation may result from several different mechanisms, and that 
the mechanism discussed here may be dominant in certain circumstances. This is 
discussed in $7 .  

2. Formulation 
We shall consider the stability of finite amplitude progressive waves in a parallel 

shear flow bounded by a rigid wall. We begin by defining certain terms which will be 
italicized on first appearance. The fluid is assumed to be inviscid and incompressible 
with uniform density p. In  Cartesian coordinates (2, y ) ,  the basic $ow consists of 
irrotational flow in the 2-direction with velocity (u, w) = (0,O) ; 0 < y < co and 
rotational flow with velocity (u, w) = ( -  wy, 0) ; - d  < y < 0, where w is the uniform 
vorticity in the shear layer of mean thickness d bounded below by a rigid wall. By 
disturbance we will mean any periodic or aperiodic vortici ty  preserving disturbance 
to the basic $ow. It is well known that the basic flow supports finite-amplitude 
progressive waves which we shall call primary waves. These have been studied by 
Broadbent & Moore (1985) for d finite and by Pullin & Jacobs (1986) for flow with 
d + 00 and with generally non-zero uniform vorticity in y > 0. Let h be the wavelength 
of a primary wave of crest to trough height 26, which moves with constant speed c 
relative to the fluid a t  rest a t  y - f  00. We shall call 6 the waveheight of the primary 
wave. Then the non-uniform flow in the presence of either steady progressive, or 
evolutionary wave-like motion may be viewed as an irrotational and therefore a 
vorticity preserving disturbance (which may be large) on the basic flow. We denote 
the disturbed vorticity discontinuity (interface) by equivalent specifications 

where e is an interfacial parameter, t is the time, z, is a complex interfacial 
coordinate and i2 = - 1. Usingj = 1,2 to denote variables in y > q(x, t )  and y < q(x, t )  
respectively, the disturbance velocity (ui, vj) may be expressed as 

where q5j and $j are disturbance velocity potentials and stream functions 
respectively. 
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For a general unsteady disturbance to the basic flow, the boundary conditions a t  
the interface may be written as 

q1 = 92. f 
Where the pressure qj is given by 

( 2 . 3 ~ )  

(2 .3b )  

( 2 . 3 ~ )  

( 2 . 4 ~ )  

(2 .4b)  

The dispersion relation for infinitesimal primary waves with wavenumber k and 
frequency u = cr,+icr, was obtained by Rayleigh (1880, 1887). Using linearized 
forms of (2 .3)-(2.4)  in which (3, 

(a,,a,,a,)exp (ikx-id), 

-icra, = - Ikl a, = ka, tanh (kd), 

q5,) are proportional to 

where 

the dispersion relation follows as 

aa2{ 1 + sign (k) tanh (kd)} = wa, tanh (kd). (2 .5 )  

Thus, if a, + 0, 
w sign (k) 

1 + coth (lkl d )  ’ 
U =  

and a,,, a,  + 0. For this mode it is easily shown that the total fluid velocity is 
continuous across the interface. There is however another solution of (2 .6 )  with a, = 
a, = 0, u = 0 and a, =k 0. For this mode there is no irrotational disturbance and the 
total velocity is then discontinuous a t  the interface by an amount equal to the 
discontinuity in shear velocity wq. We shall refer to  this as the ‘vortex sheet ’ mode. 
It is not an allowable solution to our physical problem, since this requires continuous 
total velocity, but has been introduced by our use of pressure continuity ( 2 . 3 ~ )  rather 
than continuity of total velocity, for computational convenience (to allow use of 
existing and well-tested stability codes), as our boundary condition on y = q. Thus 
although (2.3 b )  is a necessary but not sufficient boundary condition, we note that for 
wave evolution, equality of total velocity on the interface a t  t = 0, and continuity of 
pressure in t > 0 ensures continuity of total velocity in t > 0. The vortex sheet mode 
will appear later as an additional and physically irrelevant solution in our stability 
formulation, to be recognized and discarded. 

We will refer variously to dimensional and dimensionless variables, the latter 
based on the lengthscale h/n: and the timescale w-l. These are, respectively 

(x, y, t ,  A , &  d ,  w ,  c,  u - c , w ,  $ - C x , $ - c y , a , p  ...), 

( X , Y , T , n : , A , D , Q , C , U ,  V , @ ,  Y, S ,P  ...), 

where uppercase denotes a dimensionless variable, SZ = 1 is the dimensionless 
vorticity, p is a modulation wavenumber to  be defined later and we note that the 
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FIGURE 1 .  Finite amplitude wave on a uniform vortex layer of finite thickness. The flow above 
the wave profile is irrotational. The dimensionless wavelength is 71: and the amplitude is A .  

quantities Y ,  V ,  @ and Y refer to a frame of reference a t  rest with respect to a primary 
wave. We shall call A = S X / h  the amplitude of the primary wave. We emphasize the 
physical distinction between A and S: the amplitude A is our measure of steepness 
and the waveheight S is a measure of wave-extremum displacement. A primary 
wave on the basic flow with amplitude A and wavelength x is depicted in figure 1.  

In  $ 3  we utilize the nonlinear Schrodinger equation to examine modulational 
instability to disturbances on the basic flow when lPI << 1 and for waves of small 
amplitude. I n  $4 we briefly outline the present method of calculation for the primary 
wave profiles on the vortex layer. Section 5 describes the spectral calculations for the 
stability of the primary wave states of $4 to general subharmonic perturbations with 
wavenumber p .  In  the limit of small A ,  the instabilities found correspond to the well- 
known quartet wave resonance (e.g. McLean 1982) with growth rate scaling on A'. 
Over the range o f  A studied, 0 . 0 0 5 ~  d A d 0.5.n, we find instability for D/X = d / h  
in the range 0.094 < D/X < 1.7 and stability otherwise. In $6 we describe initial- 
value calculations using the CD method with an initial disturbance consisting of a 
primary wave plus an eigenvector provided by the spectral calculation. We shall 
refer to the eigenvector as an infinitesimal perturbation to the primary wave. For 
several specific cases we find waveheight growth and vorticity interface filamentation 
when P = 1 (first subharmonic instability) and D / n  = 0.4, D/n: = 0.5, but stable 
propagation of the disturbance for the spectrally stable flow with D/n: = 2.0 over the 
finite period of numerical simulation. The implications of the present results for the 
filamentation phenomenon are discussed, and a plausible mechanism is put forward 
based on examination of velocity vector plots for a particular realization. 

3. Nonlinear Schrodinger equation 
The nonlinear Schrodinger equation (NLS) describes the evolution of long- 

wavelength perturbations to waves of small amplitudes. For plane two-dimensional 
flow the relevant equation is (Pullin & Grimshaw 1986) 

where 7 = d2t, E = d(x- Vt)  are scaled time and length variably respectively, dql is the 
complex wave amplitude V = au/ak is the group velocity, h = $aV/ak ,  d is a small 
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FIGURE 2._Varia_tion of-terms contributing to  v i,n (3.5b)2 where 
pL1 =-t(s-3)(S2-2S-1)/(S+1), p2 = (S-1)2/(2kd(S+1)). S = coth(kd). 

parameter and the coefficient v is determined by the interaction of the second 
harmonic and the wave induced mean flow with the basic wave. To leading order the 
basic wave is T,I = 2Re {&,I~ exp (ik, z- iu, t ) }  where u, = uo(ko) is given by (2.6) and 
k, = 27c/h, is the wavenumber of the basic wave. Both V and h are to be evaluated at  
k = k,. The plane wave solution to (3 . la)  may be written as 

T , I ~  = Aexp (ivlA1%), (3.2) 

where dlAJ = is. The modulational perturbations are long waves with amplitude 
proportional to Re {exp (i$[-i&)) where 6 = tP2u and $ = t-lp are the scaled 
frequency aAnd modulation wavenymbers respectively. There is instability when 
0 < $z < 2 ~ h - l I A ) ~ .  This requires hv > 0, and the growth rate &I(& = c?R+i&I) is 
then given by 

The maximum growth rate and corresponding wavenumber are respectively 

c?; = i$2(2vlA12 -i$'). (3.3) 

max$(&.,) = Iv] ( 3 . 4 ~ )  

p,,, = (i-lv):IAl, (3.4b) 

while the bandwidth is !$ = 42jmaX.  
The quantities V and h follow from (2.6) and the coefficient v may be obtained from 

the analysis of Pullin & Grimshaw (1986) for the modulational instability of shear- 
gravity flows in a two-layer fluid. Omitting the algebra, the results are 

V = wde-2kdd, = -wdze--2kd, ( 3 . 5 ~ )  

+--} kd ( X + 1 )  ' (3.56) 
(s^-3) ( s^2-2~-  1)  1 (s^- 1)2 
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where 8 = coth (kd). In  (3 .5b )  the terms in curly brackets represent respectively the 
contribution to  v arising from the interaction of the basic wave with the second 
harmonic and with the wave-induced mean flow. Their variation with D / n  = d/A is 
shown in figure 2. From ( 3 . 5 ~ )  it follows that h < 0 always, so instability thus 
requires v < 0. This agrees with Benney &, Maslowe (1975) as corrected by 
Balagondar, Maslowe & Melkonian (1987). 

The limit kd = 2nd/A + 00, i.e. infinite depth of the shear layer, requires some 
comment. Here, the linear solution oscillates at fixed frequency u = -&o for all k. 
Hence by Fourier superposition there exists a solution 7 = exp (iot)f(z) where f(z) is 
arbitrary. The group velocity V becomes zero in this limit but there exists nonlinear 
dispersion. Furthermore 8+ 1 and from (3.5a, b )  v +  -wk2 and A - t O  but remains 
negative. Hence the NLS predicts instability with maxJ6,) asymptotic to Iwl lkAI2, 
a t  wavenumber 

(p,,, d)2 = (kd)’ e2kdJA/d12 

This result is not consistent with the scaling for the nonlinear Schrodinger equation 
which requires p small. The limit kd + co is therefore outside the range of validity of 
the NLS. 

4. Finite amplitude waves on a vortex layer 
I n  $5 and $6 we shall study respectively the linear stability and the nonlinear 

evolution of primary waves subject to a general subharmonic perturbation, but it is 
first necessary to calculate the interface profiles corresponding to the primary waves. 
The numerical method is essentially that used by Pullin & Jacobs (1986), so only 
brief details are given here. In  the frame of reference moving with the wave speed C 
(we employ dimensionless coordinates), the boundary conditions defining the wave 
shape may be expressed in the form of an integro-differential equation for Z,(e) = 

i dzcl de 

X,(e) + iY,(e), namely 

where 9 denotes the interface, and U,-iV, is the total dimensionless complex 
velocity given by, on 9 

Im (Ut-iP&- = 0 ,  (4.1) 

de 
rrt - iV, = --r Q dZ’ 

2ni { (Y, - q) cot (2, -2;) ++ de (Y,  + c) cot ( Z ,  -Z:’+ 2iD) 

-SzY,-C. (4.2) 

In (4.2), 2, = Z,(e) ,  2; = Z,(e’) and Q = 1. An additional condition is required to 
define the wave uniquely by specifying the amplitude A as 

Numerical solutions are found in a standard way by expanding Z,(e) as a truncated 
Fourier series 

N-1 

Z,(e) = e + A ,  sin (2e) + i Z B, cos (2ne). 
n-0 

(4.4) 

We thus consider only waves symmetrical about crest or trough. The quantity A,  is 
fixed in order to concentrate points near either the wave crest or trough and we 
determine the B,, n = 0 , .  . . , N -  1 and C by satisfying (4.1)-(4.2) a t  ej = j n / ( W ) , j  = 
1, . . . , N -  1. The two closure equations are (4.3) and the requirement that the mean 
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wave level be Y = 0. Calculations were performed with N = 40 in 14-figure arithmetic. 
Only waves of moderate amplitude compared to the limiting wave were calculated 
with A = O.O05n, O.Ol.n, 0 . 0 2 5 ~  and 0 . 0 5 ~ .  This is because convergence difficulties 
were encountered in the subharmonic spectral calculations for waves with larger A 
(see $ 5 ) .  The values of D considered were D / K  = d/h = 0.02-0.10 (0.02), 0.15, 0.24.8 
( O . l ) ,  1.0, 1.25, 1.5, 1.7,  2.0, 2.5,  5 and co. Calculations a t  D / K  = 0.9 were also done 
with A = 0 . 0 5 ~ .  

5. Spectral calculations of subharmonic instability 
From (3.5b), the NLS predicts modulational instability of primary waves on a 

wall-bounded uniform vortex layer of mean thickness d when d / h  > 0.094. When 
A is small the mechanism of the instability may be interpreted as the well-known 
quartet-resonant interaction operating between two components of the main wave 
with wavenumber k,, and two sideband components, with wavenumbers chosen as 
p - k ,  and p + k ,  respectively, so as to satisfy the appropriate resonance condition. 
Pullin & Jacobs (1986) performed spectral calculations of general subharmonic 
instability in the limit D / K  + co and found stability for all p .  I n  order to examine the 
wave stability properties when d is finite we calculated numerically the stability of 
the primary wave states described in $4. The numerical method is an application of 
that described by Pullin & Grimshaw (1986), which in turn was derived from the 
technique developed by McLean (1982) (see also McLean et al. 1981) for the 
calculation of water-wave instability. Since the present implementation differs from 
that of Pullin & Grimshaw only in that gravity is absent and the fluid density is 
uniform, we give only a brief outline. 

We use dimensionless variables as described in $2 and choose a frame of reference 
a t  rest with respect to the steady non-uniform flow given by the primary waves of 
$4. We consider disturbances to the basic flow given by 

y, = E ( X )  + € K ( X ,  T ) ,  ( 5 . 1 ~ )  

(5.1 b)  

ul, = PzCX, Y )  + &(x, y,  TI, ( 5 . 1 ~ )  

where barred quantities are solutions for the primary waves, Yc, 4; and +; are 
perturbations, e 4 1 is the perturbation amplitude and the perturbation waveheight 
(t crest to trough) is O ( B ~ / X ) .  Next we substitute (5.1) into (2.2)-(2.4), expand in 
powers of e about the primary wave solution and retain terms of O(E) .  This gives a 
set of boundary conditions to  be satisfied on Y = z ( X )  which are linear in YL, 4; and 
@Cr;. We note that this procedure differs from that of Pullin & Jacobs who used 
boundary conditions consisting of the wave kinematic condition together with 
specification of equal total-fluid velocity on either side of the interface. We now seek 
solutions, which automatically satisfy V2& = Vz& = V2@/;: = 0, of the form 

Ipj = qx, Y ) + € $ q X ,  Y ,  T) (j = 1,2), 

W 

Yc = exp ( - iST + i P X )  C a,  exp (BimX), ( 5 . 2 ~ )  
-m 

W 

& = exp (-iST+ PX)  C b, exp ( B i d )  exp ( -  R ,  Y ) ,  (5.2 b)  
-m 
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m sinh [R,(Y+D)] 
-m cosh [R, D] ’ 

$;= exp ( - iST+ P X )  C Em exp (2imX) ( 5 . 2 ~ )  

(5.2d) 
cosh [R, (Y +D)] m 

#; = exp ( - iST+ iPX)  C c, exp (2imX) 
-W cosh [R, D] ’ 

where R, = f2m +PI, Em = c, sign (2m + P), S = S ,  + is, is the dimensionless complex 
frequency and P ;  0 < P < 2 is the modulation wavenumber. Use of (5.2) in the 
linearized boundary conditions gives an eigenvalue problem with eigenvector [a,, b,, 
c,IT, m = -a,. . . ,a and eigenvalue S. The assumed symmetry properties of the 
basic wave may be used to show that eigenvalues are either purely real or occur in 
conjugate pairs. Hence spectral instability corresponds to finding an eigenvalue with 

The calculations were performed by first truncating the series in (5.2) at m = M 
terms. The linearized boundary conditions were then applied a t  2M+l equally 
spaced points on the primary wave profile Y, = Y , ( X ; D ,  A )  in 0 < X < n. This gives 
a (W+3) x (W+3) discrete eigenvalue problem which was solved numerically by 
standard methods based on the QZ algorithm. Of the W+ 3 eigenvalues produced in 
each specific calculation, 2,M+ 1 correspond to linear modes propagating on the non- 
uniform flow given by the steady primary wave, with continuous total velocity 
across the perturbed vorticity jump. These are solutions for our physical problem 
and it is within these modes that instabilities, if they exist, must appear. A further 
2M+ 1 eigenvalues correspond to finite-amplitude realizations of the vortex-sheet 
mode discussed in $2, and finally there is a (2M+l)-fold degenerate infinite 
eigenvalue which appears owing to the linear interdependence of the coefficients in 
(5.2) : there are only 4M+ 2 linearly independent modes. The 2M+ 1 vortex-sheet 
modes are spurious insofar as our physical problem is concerned and must be 
discarded. They are easy to recognize since there is no associated velocity field 
perturbation, i.e. b,  = c, = 0, a,  = 0, m = -M,  . . . ,M ,  in (5.2).  Moreover, quite 
general arguments based on evolution equations for the tangential velocity jump 
across the interface in infinitesimal perturbations to the steady flow of the primary 
wave may be used to show that there can be no modulational-type instability 
associated with the vortex-sheet mode. Hence any unstable eigenvalues produced in 
the spectral calculations represent modulational instability of finite amplitude 
primary waves on the vortex layer. 

When A + 0, the physically relevant dimensionless eigenvalues are given by, from 
(2.6) 

where C,  = t[l + coth (2D)]-’ is the linearized dimensionless phase speed of the 
primary wave, corresponding in (5.3) to P = 0, m = 1, S ,  = 0. In  this limit and when 
P 4 1, the modulational instability described by the NLS of 33 should apply. When 
A > 0 and P is not small, the appearance of instability is expected to be associated 
with the coalescence of distinct eigenvalues, say SmI(P;  d , D )  and SmZ(P;  A ,  D) into a 
conjugate pair, and in the limit of small A ,  the quartet resonance corresponds to 
m1,2 = f l .  Further, it may be shown that X,(P;A,D) = -S?,,+,,(2-P; A , D ) ,  and 
we note that this is satisfied by (5.3). Using this and similar results for the 
eigenvectors in each of (5.2), i t  follows that any solution of the eigenvalue problem 
with wavenumber P has a physically equivalent solution corresponding to  
wavenumber 2 - P .  This is sufficient to show that there are always two solution 
branches when 0 < P < 2 ,  which together give symmetry about P = 1. Hence it is 

s, * 0. 

S ,  = -C,(P+ 2m) + sign ( P +  2m) [ 1 +  coth (DIP+ 2ml)]-I, (5.3) 
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always sufficient to perform calculations with 0 < P < 1 and to infer results for 
1 < P < 2 from symmetry and the second branch. For display purposes it is convenient 
to show results for a single branch in 0 < P < 2. 

Calculations were performed for the values of D specified in $4. For each D ,  
primary waves of amplitude A = 0 .005~ ,  0.001n, 0 . 0 2 5 ~  and 0 . 0 5 ~  respectively were 
tested for instability a t  values of P = 0.01-0.10 (0.01), 0.124.90 (0.02) and 0.91-1.00 
(0.01). Where instabilities with narrow bandwidth were detected, smaller increments 
in P were used locally. Results were obtained with M = 10-30 coefficients in the 
eigenfunction expansion for the perturbation (5.2), with A = 0 . 0 0 5 ~ ,  0 . 0 0 1 ~  and 
0 . 0 2 5 ~ ,  but it was found that M = 40 was required for satisfactory convergence of the 
eigenvalues as M was increased for A = 0.057~. Some calculations a t  A = 0 . 0 7 5 ~  were 
attempted but, these were not successful with M = 40, which was the largest value we 
could use within the limits of our available computing resource. 

The present numerical stability results with A > 0 are depicted in figures 3-6, 
where curves of &',/A2 versus P are shown with A and D fixed. The scaling &',/A2 is 
suggested by the NLS predictions and also by the well-known generic result for an 
(N+2)th-order wave resonance where growth rates are expected to be O ( A N ) .  The 
qualitative trends shown in figures 3-6 are similar for each of the four values of A 
treated here. These trends are conveniently discussed in terms of the (dimensional) 
quantities 

gmax = max [u , (p ;  6341, (5.4) 
P 

the maximum growth rate a t  fixed 6 and d ,  p,,,, the value of p corresponding to 
urnax, and Ap, the bandwidth of the instability. Dimensional analysis gives 

(5.5a) 

(5 .56 )  

( 5 . 5 c )  

Denoting the dimensionless forms of (vmax,pmaxr Ap)  by (X,,,, Pm,,, AP) respectively, 
based on the lengthscale h/n and the timescale up', it follows that fi  = SmaxAp2, 
f 2  = PmaxApl  and f 3  = APA-'. Plots of u,,, and A P  versus d / h  = D / n  a t  fixed 
A / x  = 6/h,  obtained from the eigenvalue calculations, are shown in figures 7-8. Also 
shown are predictions of the NLS obtained from (3.3)-(3.6). Note that the measure 
of scaled primary wave amplitude appropriate to the NLS calculations of $3  and the 
present amplitude A are related as A = 2xEJAI/h (or 6 = 2&4I : t and E have different 
meaning). Equations (3.4)-(3.5) predict that  fl, f 2  and f 3  of (5:5) depend only on D / n ,  
and hence the NLS predictions appear as single (solid) lines in figures 7-8. There is 
good agreement between the results given by the NLS and the spectral calculations 
a t  small D / n  in figures 7-8 ; both predict stability at D / n  < 0.094. At larger D/n the 
spectral calculations show dependence of fl-f3 on A / n .  As D/n increases further, 
figures 3 4  indicate detachment of the instability bands from P = 0 and a subsequent 
reduction in both AP and S,,, for each of the four values of A examined. No 
instability could be detected a t  our values of A with D/n: = 1.70, 2.0, 2.5, 5.0 and co 
respectively. When d/n: = 0.005, which shows the largest bandwidth at D / x  = 1.50, 
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FIGURE 3. Calculated growth rate of finite amplitude instability, A / n  = 0.005. Values of D/n  as 
shown. 
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FIGURE 4. For legend, see figure 3. A / n  = 0.01, values of D/n as shown. 
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FIGURE 5. For legend, see figure 3. A / n  = 0.025, values of D / n  as shown. 
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FIGURE 6. For legend, see figure 3. A / n  = 0.050, values of D / z  as shown. 
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FIGURE 7 .  Maximum growth rate of instability 0, A/n: = 0.005; a, 4/71 = 0.01 ; 
0, A / n  = 0.025; x , A / n  = 0.05; -, nonlinear Schrodinger equation. 

the search was conducted at P = 1.35-1.65 (0.005) for D / n  = 1.70. Hence any 
instability band in this range of P must have AP < 0.005. 

From the spectral results we conclude that the finite amplitude progressive 
primary waves of wavelength n on a uniform vortex layer of mean thickness D are 
unstable to general subharmonic disturbances when 

This result appears to hold independent of A over the range of A tested. It is thus the 
lengthscale ratio D / n  that controls the instability and the main effect of A is that the 
growth rate of the instability scales approximately on A 2 .  The result is also consistent 
with the related calculations of Pullin & Jacobs (1986) who, using a different 
implementation of the boundary conditions to that employed here found stability 
when D +  co. 
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FIGURE 8. Bandwidth of instability. For key, see figure 7. 

6. CD simulation of nonlinear wave evolution 
The results of $5 suggest a mechanism whereby finite amplitude primary waves of 

arbitrarily small d and with wavelengths in the range given by (5.6) may grow in 
waveheight by an instability which a t  6 4 h is a resonant interaction. In order to 
examine the possible relevance of this instability to the interfacial filamentation 
phenomeuon discussed in $1, we performed contour dynamical (CD; see Deem & 
Zabusky 1 9 7 8 ~ )  calculations of the nonlinear wave evolution using as initial 
conditions a disturbance to the basic flow comprising a primary wave with a 
superposed perturbation consisting of an eigenvector provided by the spectral 
calculations. We utilize dimensionless coordinates and consider a computational 
domain consisting of n wavelengths in the X-direction of the primary wave where n 
is a positive integer. The CD implementation is that of Jacobs & Pullin (1985) to 
which we refer the reader for numerical details. The full evolutionary equations are 

az* sz c- 
aT 2xi 

] - T} de' - QY,, (6.1) 

where Z,*(e, T ) ,  0 < e < nx is the Lagrangian description of the interface shape, and 
we note that (6.1) describes the wave evolution in a frame of reference a t  rest with 
respect to the fluid a t  Y +  co. 

We choose initial conditions in the form of ( 5 . 1 ~ )  and ( 5 . 2 ~ )  with Yh in ( 5 . 2 ~ )  
evaluated at T = 0. The coefficients a,,,, m = -M,  . . . ,M provided by the spectral 
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calculations are normalized such that max [Y:(X,  O)] -min [Y:(X,  O)] = 2, and the 
coefficient of maximum amplitude is purely real. Hence from (5.1 a )  and ( 5 . 2 ~ )  cis the 
dimensionless amplitude of the perturbation (waveheight = E / \ / x ) ,  corresponding to 
subharmonic wavenumber P. 

The CD calculations were done using four primary wave states with properties 
summarized in table 1. Of these one wave is spectrally stable while the other three 
exhibit instability and were chosen to span a moderate range of A ,  0.035 < A / n  < 
0.05. We would have liked to  perform calculations with the smaller amplitude 
A / R  = 0.025 but tests with D / n  = 0.6 proved indecisive as the growth rate of the 
waveheight was too small. The value of P was chosen as P = 1.0 for all cases. Hence 
the disturbance wavelength is 25r: (first subharmonic) and n = 2 in (6.1). With 
D / n  = 0.4 and U / n  = 0.5 this choice exhibits subharmonic instability a t  near the 
maximum growth rate, while with D / n  = 2.0, the spectral calculations indicate 
absolute stability to perturbations of infinitesimal amplitude. Typical spectra 
calculated as in $5  for two of the primary wave states, one stable and one unstable, 
are shown in tables 2-3 where we tabulate the first seven eigenvalues with S, < 0. 

We report, the results of seven CD simulations of wave evolution with initial 
conditions as described previously. The results of four simulations are shown 
graphically in figures 9-12, where each figure shows a sequence of wave profile shapes 
with increasing T as indicated. For most simulations the initial number of points on 
the interface was N = 400 and these were spaced equally in X .  In  cases where 
filamentation occurred, N increased rapidly. Simulations were terminated when 
either N reached Nma, = 1500 or when the fractional change in area in 0 < X < 2x, 
-D < Y < Y,(e, t )  exceeded No ‘contour surgery’ style algorithm was 
employed: our main aim was to  examine the onset of filamentation rather than its 
long-timescale state. 

In  figure 9 the parameters are D / x  = 0.4, A / x  = 0.05, c = 0 corresponding to the 
unperturbed primary wave. The CD calculations showed wave propagation with 
unchanging form over some 20T,, where T, is the wave period. Figure 10 shows a 
simulation with D / n  = 2.0, A / n  = 0.05. The perturbation was chosen as a stable 
eigenvector with amplitude E / R  = 0.005. This and a similar calculation (not shown) 
with the same D ,  A and c but with a different initial perturbation eigenvector both 
showed no tendency towards filament formation over some 20Tw. Close examination 
of the interface crest and trough displacements showed that these did not tend to 
grow with time but appeared to oscillate about the equilibrium value with amplitude 
roughly equal to c as would be expected from linear theory. 

Figure 11 shows the case D / x  = 0.40, A / x  = 0.05, € / A  = 0.005 with the 
perturbation now chosen as the unstable eigenvector with growth rate shown in table 
2. In  this case it was found that the Y-displacement of both profile troughs showed 
oscillation accompanied by slow growth. At T = 94.08 in figure 11 the slope becomes 
large and the interface overturns near T = 95.28, leading to subsequent intrusive 
filamentation, that  is the filament grows into the vortical layer. The filamentation 
repeats after approximately T, in agreement with the results of D1 although as will 
be discussed subsequently we believe the mechanism to be different. In  figure 12 
again D / n  = 0.40, A / %  = 0.05, E / X  = 0.005 but in this case the disturbance contains 
a perturbation which is not an unstable eigenvector. Again there is filamentation but 
it is delayed compared to the case of figure 11. In  table 4 we summarize the results 
of three simulations where the disturbance consists of the primary wave plus the 
unstable eigenvector. For each case there is filamentation a t  time tabulated as 
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DX A I n  C T W  L n  81 
0 0.05 0.262281 11.9780 - 2.0 

0.4 0.05 0.260474 12.061 1 -0.183584 0.01069 
0.5 0.04 0.257386 12.2058 -0.142 170 0.00654 
0.5 0.035 0.255550 12.2935 -0.122458 0.00530 

TABLE 1. Primary wave states used in Contour Dynamical calculations. C is the primary wave 
speed, T, the period, Y,,, the displacement of the wave trough and S,  is the maximum growth rate 
of the subharmonic instability with P = 1 

S,(d = 0) m S R  8, m' 

-0.21 1 14 x 10' -1 -0.207 15 x 10' 0.10692 x lo-' 1 
-0.25434x 10' 1 -0.207 15 x 10' 0.10692 x lo-' 1 
-0,741 80 x 10' 2 -0.67247 x 10' 0 2 
-0.12385~ 10' 3 -0.11415~ 10' 0 3 
-0.17352 x 10' 4 -0.16105 x 10' 0 4 
-0.22320 x 10' 5 -0.20797 X 10' 0 5 
-0.27287 x 10' 6 -0.25492 x 10' 0 6 

TABLE 2. Portion of calculated spectrum D / x  = 0.40, A/n = 0.05, P = 1. m labels the eigenvalue 
for A = 0 (equation (5.3)). vn' labels a,. with the maximum magnitude in the eigenvector. Only 
eigenvalues with S,  < 0 are shown since for P = 1, the spectrum is antisymmetric about S = 0. 

S,(S = 0) 

-0.25000 x loo 
-0.25000 x 10' 
-0.75000 X 10' 
-0.12500 X 10' 
-0.17500 X 10' 
-0.22500 X 10' 
-0.27500 X lo1 

m 

- 1  
1 
2 
3 
4 
5 
6 

S,  m' 8, 
- 0 . 2 1 2 1 3 ~ 1 0 ~  0 1 
-0 .24652~ 10' 0 -1 
- 0 . 6 8 0 6 1 ~ 1 0 ~  0 1 
-0.11529~10' 0 3 
-0.16252~10' 0 5 
- 0 . 2 0 9 7 6 ~ 1 0 ~  0 4 
-0.25703X 10' 0 5 

TABLE 3. For legend, see table 2. D/n: = 2.0, Aln = 0.05, P = t 

T 
0 

48.24 

96.49 

144.73 

192.98 

24L.22 

FIGURE 9. Evolution of vorticity interface (wave profile) calculated using contour dynamics. Each 
wave profile is depicted in a frame of reference in which flow a t  Y +  m is stationary. Dimensionless 
times T as shown. The computational domain in the X-direction is of length 2 x basic wave- 
length = 2rc. The flow above the interface is irrotational and the flow below has unit vorticity. 
Parameters: D/X = 0.40, A/n: = 0.05, E = 0 (no perturbation). Primary wave speed C = 0,260474 
and period Tw = 12.061 1. 
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T 
0 

23.96 

47.9 1 

71.87 
95.82 
119.78 

143.74 

167.69 

191.65 
215.60 

239.56 

FIGURE 10. For legend, see figure 9. Basic wave D/n = 2.0, 6/71 = 0.05. Perturbation is stable 
eigenvector with P = 1 ,  E / R  = 0.005. 

T 
0 

24.12 

48.24 

72.37 
84.43 
85.63 
86.84 
88.05 
89.25 
90.46 

91.66 

92.87 

94.08 

95.28 

96.49 
97.69 
98.90 
100.11 
101.31 
102.52 

103.73 

104.93 

106.14 

107.34 

108.55 
109.76 
110.98 
112.17 
113.37 
114.58 

FIQURE 1 1 .  For legend, see figure 9. Basic wave D / x  = 0.40, A / x  = 0.05. Perturbation is 
unstable eigenvector (see table 2). P = 1 ,  c/n = 0.005. 



Instability and $lamentation of $nite-amplitude waves 375 

FIGURE 12. For legend, see figure 9. Basic wave D/x = 0.40, E / X  = 0.05. Perturbation is stable 
eigenvector. P = 1 ,  B / X  = 0.005. 

D/X A h  8, 4 %r*, K ( T, )a* T, 
0.4 0.05 -0.2072 0.0107 -0.1914 -0.2486 69 94 
0.5 0.04 -0.2259 0.0065 -0.1892 -0.2011 203 184 
0.4 0.035 -0.2291 0.0053 -0.1792 -0.1908 308 236 

TABLE 4. Estimated Y-level of filamentation Y,,,, and filamentation time 
calculated values, 
perturbation is the unstable eigenvector with E = A/10.  

compared to 
respectively for unstable waves of table 1 .  For all cases P = 1 and the and 

Tp = wt,, where T, is the time at which the wave just begins to overturn, and this 
occurs when the interface minimum Y p  takes the values shown. 

We interpret these results, namely that the stable wave of figure 10 shows no 
growth in waveheight and no tendency towards filamentation but that i t  is seen in 
figures 11-12 and in the other cases tabulated in table 4 for the unstable waves, as 
evidence that, for the vortex equilibria given by the primary wave at  arbitrarily 
small d and with perturbations a t  sufficiently small E ,  the underlying cause of 
filamentation is the instability calculated in $3 and $5 .  If this speculation is correct 
we would expect filamentation of the vorticity interface for our wall-bounded vortex 
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FIGURE 13. Velocity vector plot obtained in a reference frame moving with speed U,,, = (0.1775, 
0) relative to the stationary fluid at Y +  00. D / R  = 0.40, A / x  = 0.05. Perturbation is unstable 
eigenvector with E / R  = 0.005. (a )  T = 0,  ( b )  T = 95.28. Kote the presence of a hyperbolic stagnation 
point (0) positioned immediately below the interface minimum a t  T = 0 and very near the 
interface a t  the onset of filamentation when T = 95.28. 

layer following disturbances to the parallel flow that are sufficiently close to a 
primary wave with wavelength in the range given by (5.6). We are not suggesting 
that filamentation is the occurrence of a singularity in the Euler equations but that 
i t  corresponds to the production of large but finite curvature a t  isolated points in the 
presence of an overturning interface. 

Having identified a mechanism for the growth of interface perturbations, there 
remains the question concerning the kinematical cause of the interface overturning 
which results in filamentation. Some insight into this may be gained by an 
examination of the velocity field near the interface a t  times T near thc onset of 
filamentation. Figure 13 shows velocity-vector plots, at times T = 0 and T = 95.28, 
in a frame of reference moving with X-velocity Urel = 0.1775 relative to the fluid a t  
rest a t  Y + a3. In  figure 14 we show a magnified view of the vector field a t  the point 
of filament formation. The frame of reference corresponding to Urel = 0.1775 was 
found by trial and error using the criterion that the interface minimum should be 
approximately stationary just a t  the beginning of filamentation. Note in figure 13 
and more clearly in figure 14 the presence of a moving hyperbolic stagnation point 
which almost coincides with the interface extremum when filamentation begins. This 
is strong evidence that the actual process of filamentation for our class of initial 
disturbance is related to the presence of a stagnation point in the frame moving with 
the wave (see also Melander, McWilliams & Zabusky 1987). When the stagnation 
point touches the interface profile, the irrotational fluid above the interface crosses 
the dividing streamline (see for example figure 14c) and the subsequent interface 
distortion results in filamentation as is clearly seen in figures 14(d)  and 14(e) .  This 
mechanism is then rather similar to  the (axisymmetric) distortion of the boundary 
of the Hills spherical vortex by the rear stagnation point following a small boundary 
disturbance away from the spherical (Moffat & Moore 1979). 

Our interpretation of the computations is that for our flow the stagnation point is 
not itself produced by the filamentation phenomenon. This is clear from figure 13 (a)  
which shows stagnation points in the flow near the interface minimum a t  T = 0. 
These appear to be associated with the well-known ‘cat’s eye’ streamline pattern 
which forms in a shear flow subject to wavelike motion. They will be present for 
primary waves of arbitrarily small A .  
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I n  the present context an estimate of the y-level of the stagnation point can easily 
be made. Assume for the flow depicted in figure 11 and figures 13-14, that the 
disturbance eigenvector can be approximated by a single mode with local wavelength 
equal to that associated with its dominant component m = 1 (table 2). With respect 
to the flow at rest as y-f 00, this disturbance moves with speed 

where C = 0.2605 is the main wave speed. Using P = 1 ,  m = 1 and S, = -0.2072 
from table 2 gives urel = 0.1914 (whn-’) compared to the dimensionless value of 
0.1775 for the numerically measured speed of the reference frame, discussed earlier, 
in which the interface minimum is stationary at the point of filament formation. The 
agreement is sufficiently close to suggest that, to first order, the preferred frame of 
reference for viewing the kinematical events controlling filamentation is that moving 
with velocity given by (6.2). Now consider the Y-level of the critical layer (i.e. 
u = 0) of the basic flow in this reference frame. It is a t  this Y-level, to first order, 
where ‘cat’s eye’-type critical points will appear when the basic flow is disturbed 
by the presence of the primary wave plus the perturbation. From (6.2) this 
is ycrit = -[C+SR/(P+2m)] An-’ = -0.1914h7~-~. By comparison, the y-position of 
the interface a t  the point of filament formation, say in figure 14(b) is yr 
-0.2486hn-l. Estimates of xrit compared to the calculated y f  for the other 
unstable waves of table 1 are given in table 4. While not perfect the agreement 
between Ycrit and Yf is consistent (note that we have neglected the effect of the finite 
amplitude wave on Krit ; the error is expected to be O ( A ) )  with the hypothesis that 
stagnation points producing filamentation arise in the perturbed critical layer of the 
shear flow. 

An estimate of the time to  filamentation T p  = wt, may now be made. Assuming that 
the interface has an initial minimum Y = Ymin corresponding to the primary wave 
(see table 1) and that the perturbation begins a t  the interface minimum and grows 
with the linear growth rate S,(d,D,P) given by the spectral results, then T f  is the 
time for growth to I&, and is given by 

Yrnin-Eex~ (81 T,) = Y,rtt. 

Our earlier estimate Krit = - [C+SR/(P+2m)] then gives 

T p  = S;llog[(C+- P+2m 8, + ~rnin)/c], 

Using S, = 0.01069 (table 3), A / n  = 0.05, E / X  = 0.005 and ymin = -0.183584 (table 
1) gives T f  = 69 compared with Tf w 94 from figure 11. Estimates for the other 
unstable cases compared to  the calculated wt, are shown in table 4. When A + O ,  the 
spectral results show fl -+ 1, i.e. Sma,+d2. Now when A is very small the difference 
between a pure cosinusoidal disturbance and a primary wave of the same amplitude 
A can be viewed as a perturbation with amplitude c = O ( A 2 ) .  This is because the 
shape of the primary wave can be expressed as a power series in A .  Hence for a pure 
cosinusoidal disturbance with wavelength in the spectrally unstable range, from (6.4) 
with S, = Smax, our estimate for is then 

T p  = - const A-2 log A ,  (6.5) 

which may be taken as the principal result of this paper. 
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The limiting primary wave of maximum A occurs when the wave trough, or more 
precisely, the wave extremum on the rotational side of the interface just touches a 
hyperbolic critical point in the reference frame of the primary wave, and the interface 
forms a corner of angle +IT (Broadbent & Moore 1985; Pullin & Jacobs 1986). This 
may perhaps be viewed as a form of degenerate filamentation, although we stress 
again that filamentation does not require or imply the presence of a corner or cusp 
at the interface. A referee has pointed out that for this limiting wave, consistency 
requires that the speed of the perturbation relative to the primary wave should 
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FIGURE 14. Magnified view of velocity vector plot near breaking interface. U,,, = (0.1775,O). 
Parameters as for figure 13. (a) T = 91.66, (b) T = 92.87, (c) T = 94.08, (d) T = 95.28, (e) T = 96.49. 

Note the presence of the moving hyperbolic stagnation (0) point near the breaking interface. 

vanish, i.e. SR+O. We find monotonic decrease in S ,  when A increases from zero but 
for reasons discussed previously we have been unable to calculate stability near the 
limiting primary wave. 

7. Discussion 
Consider the space 9 of Fourier coefficients corresponding to all possible initial 

conditions for x-periodic or aperiodic (to include (5.1 a )  and ( 5 . 2 ~ ) )  single-valued 
disturbances to our basic flow with mean depth of shear layer d.  The primary waves 
are fixed points in 9 lying on families of curves in 9 with parameters S and d. For 
given d there is a curve with parameter S which runs continuously (apart from 
possible bifurcations which have not been investigated) from the origin to a point in 
9 corresponding to the limiting wave for that d ,  where the wave crest meets a 
hyperbolic critical point in the reference frame moving with the primary wave. Fixed 
points are either stable or unstable to infinitesimal subharmonic perturbations 
dependent on d / h  as given by (5.6). In  D1 it  is hypothesized that almost all 
perturbations (our sense) to vortex equilibria will filament in a time inversely 
proportional to the square of the amplitude of the perturbation by nonlinear focusing 
to smaller scales. The evidence refers to isolated perturbations to  stable Kirchoff 
elliptical vortices including the circular vortex patch as a special case, and relies on 
identification of filamentation with breakdown of a weakly nonlinear approximation 

13 F L M  209 



380 D. I .  Pullin, P.  A .  Jacobs, R. H .  J .  Grimshaw and P. G. sluffman 

to the full CD equations. In  the present context this implies that all points in B 
including points arbitrarily close to either a stable or unstable fixed point will 
filament in time proportional to  e-' by nonlinear focusing to smaller scales, wherc E 

may be taken as some measure of the distance in F to the nearest fixed point. 
Our conclusions are more restricted and can be summarized as follows : 
( i )  One possible mechanism of filamentation is the instability of primary waves 

(fixed points) of finite or of arbitrarily small amplitude to infinitesimal subharmonic 
perturbations. We note that primary waves have a dominant Fourier mode. 

(ii) In this case the mechanism of filamentation is the approach of the wave 
extremum to a hyperbolic critical point at or near the critical layer of the primary 
wave in a reference frame defined by the perturbation. 

(iii) The time for filamentation when the primary wave is unstable is given by (6.5) 
and scales inversely on the square of the amplitude of the disturbance. 

(iv) Any disturbance will filament immediately if it contains a dominant Fourier 
mode with coefficient a and wavenumber k such that ka exceeds 0.5, since this places 
the wave extremum a t  a critical layer associated with the dominant mode. 

There then appear to  be three mechanisms of filamentation for a point in 8. First 
is the response to a large perturbation (iv), which may be viewed as a sufficient but 
not necessary condition for filamentation. This essentially kinematic event accounts 
for the filamentation seen by Pullin (1981) and by Stern (1985). We shall refer to this 
as the kinematic mechanism. Second is the linear-instability of the primary wave 
(i)-(iii). This includes our calculations and the Polvani, Flier1 & Zabusky (1989) 
instability of the Kirchoff elliptical vortex with aspect ratio a/b > 3. Our case is 
interesting in that the primary wave may be of arbitrarily small amplitude and close 
to the basic flow whereas for the vortex patch the amplitude of the primary wave 
(viewing the circular patch as the basic flow) has to be large. Thirdly is the nonlinear- 
cascade mechanism proposed by D1. It is clear that this is distinct from the linear- 
instability mechanism since the numerical evidence indicates that filamentation can 
occur without growth in waveheight : the linear-instability mechanism produces 
waveheight growth towards critical points of the velocity field which are present by 
virtue of the finite amplitude primary wave, while for the D1 mechanism, a 
steepening is produced by weakly-nonlinear interactions, which then produce a 
critical point a t  the interface and filamentation follows. 

According to these arguments i t  is then possible that our primary waves may 
filament in time O(e:-') by the D1 mechanism irrespective of spectral stability in the 
sense of $5, although we stress that there is, as yet, no hard evidence for this. For the 
case of a pure cosinusoidal disturbance to the basic flow with arbitrarily small 
amplitude A ,  then since E = O ( A 2 )  as previously argued, it follows that Tf would then 
be O(A-*),  which would be very difficult to verify by purely numerical means when 
A + 0. For spectrally unstable primary waves this is longer than A+ log ( A )  as given 
by (6.5) so we would expect the linear-instability mechanism to be dominant in these 
circumstances. 

Having analysed the linear-instability. mechanism in $6 we now distinguish 
between the kinematic and the D1 nonlinear-focusing mechanisms by a particular 
example. We follow D1 and consider an almost-isolated antisymmetrical disturbance 
to a deep shear layer (d+ 03) of the form 
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N A A0 T, 
400 1/10 0.3032 3.1 
400 1/20 0.1516 24.0 
400 1/40 0.0758 175.9 
850 2/2/80 0.0536 351.8 

400 - 1/20 -0.1516 66.0 
850 -2/2/80 -0.0536 449.1 

TABLE 5. Filamentation time 7: for antisymmetric almost isolated disturbance, equation (7.1). 
All cases have m = 20. 

repeating every 271 in the X-direction, so that the flow is X-periodic. I n  (7.1) 
X, = n/m and 6 = A exp (-0.5) is the waveheight. The local wavelength may be 
taken as h = 4X, and so the equivalent amplitude A ,  = 6n/h = 0.156Am. Since (7 .1)  
is not near a primary wave in F (we know of no solitary-wave-like fixed points which 
would resemble (7.1) when A + O  and we doubt their existence) then the basic flow 
should be viewed as the vortex equilibrium state, so that (7.1) means our sense of 
both disturbance and perturbation. Seven CD calculations were performed each with 
m = 20 but with differing values of A and N listed in table 5 ,  which also shows the 
observed time T f  to filamentation for each case. The results for A > 0 may be 
consistent with the asymptotic scaling Tf = 0 ( A i 2 )  suggested in D1. For the case with 
A = &, the initial disturbance is the negative of case 30 in D1, which is equivalent to 
putting A = -$ in (7.1). This has the puzzling effect of increasing T f  from Tf = 24 
( A  = &) to T f  = 66 (A = -8) ? When A = & 2/2/80 the effect on T f  of sign (A) is much 
reduced but remains of order several wave periods. This suggests that smaller A than 
used presently may be required to determine the true asymptotic behaviour of T f  
when A + 0. 

In figure 15 we illustrate filamentation with A = & (k8 = 0.6064). Th' is occurs 
immediately by the kinematic mechanism with the interface overturning intrusively 
a t  the trailing depression. We found that a purely cosinusoidal disturbance with 
A = 0.3032 (not shown) exhibited locally similar filamentation a t  the same T f .  By 
contrast, in figure 16 with A = &,, there is local steepening as found in D1 a t  the 
leading edge of the disturbance (the local phase velocity of the disturbance extrema 
is from left to right) which produces intrusive filamentation at = 176 presumably 
by the D1 mechanism. The different interface geometry is characteristic of the 
different mechanisms : that for the kinematic mechanism is of course locally similar 
to filamentation by the linear-instability mechanism (e.g. figure 11)  but no interface 
growth dynamics are required. 

Finally we remark that all cases of filamentation observed here for the parallel 
basic flow with irrotational flow on one side of the interface exhibit intrusive 
filamentation whilst that seen in D1 for vortex patches in plane flow (with the 
exception of case 30) and by Polvani, Flier1 & Zabusky (1988) show extrusive 
filamentation in the sense that the filament grows into the irrotational fluid 
surrounding the vortex patch. For the kinematic and the linear-instability 
mechanism this can be explained from the fact that, in the reference frame that 
rotates with the Kirchoff ellipse there is effective shear exterior to  the interface which 
then places the relevant critical points of the vortex equilibria in this domain. This 
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/-- 
-in T 
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1.57 

3.14 
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6.28 

FIGURE 15. Evolution of portion of wave profile in -in < X < $I with antisymmetric almost 
isolated initial disturbance (7.1).  A = &, m = 20. Flow above interface is irrotational and flow 
below has unit vorticity. 
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FIGURE 16. For legend, see figure 15. A = &, m = 20. 

can be demonstrated as follows: consider a uniform circular vortex of radius r = ro 
and vorticity w ,  When subject to perimeter shape disturbances of the form 

r = ro+Sexp[i(M8-cr,t)], 

where 8 is a polar angle, 6 4 r,, and M is integral, then to O(S), the wave crests move 
with angular velocity (Lamb 1932, $158) 

(7.3) 
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If we move in a frame of reference rotating with this angular velocity, then the 
tangential velocity distribution for the mean flow is 

(7.4a) 

(7.4b) 

I n  this reference frame the flow is rotational in r > r,,. There is thus an effective 
critical layer, where v, = 0, at r = rc, where from (7.4b) 

r c  = r,, - (LlY 
In our rotating frame of reference in which to  0(6 ) ,  the wave crests are stationary, 
there will exist hyperbolic critical points in the presence of the wave at  r !z rc,  
0 = 2(m- 1) R I M ,  m = 1,. . . ,M on the true irrotational side of the interface. The 
Kirchoff ellipse has M = 2. 

For the D1 nonlinear-cascade mechanism following small isolated disturbances to 
the circular patch, filamentation appears intrusive when viewed in the reference 
frame of the vortex patch solid-body rotation but we can find no obvious 
explanation. This and other questions concerning, for example, the detailed nature 
of the DI mechanism and the possibility of spontaneous corner formation in 
vorticity-interface evolution must await further research. 

The comments and criticisms of Dr David Dritschel on several versions of this 
paper are gratefully acknowledged. This work was supported by the Australian 
Research Council under grant number A48315031. 
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